Fisica

Meccanica e Termodinamica

Ugo Gasparini • Martino Margoni • Franco Simonetto

Fisica

Meccanica e Termodinamica

Opera coperta dal diritto d'autore – tutti i diritti sono riservati.

Questo testo contiene materiale, testi ed immagini, coperto da copyright e non può essere copiato, riprodotto, distribuito, trasferito, noleggiato, licenziato o trasmesso in pubblico, venduto, prestato a terzi, in tutto o in parte, o utilizzato in alcun altro modo o altrimenti diffuso, se non previa espressa autorizzazione dell'editore. Qualsiasi distribuzione o fruizione non autorizzata del presente testo, così come l'alterazione delle informazioni elettroniche, costituisce una violazione dei diritti dell'editore e dell'autore e sarà sanzionata civilmente e penalmente secondo quanto previsto dalla L. 633/1941 e ss.mm.

In copertina: immagini della Torre della Specola, dal 1777 sede dell'antico Osservatorio Astronomico dell'Università di Padova istituito per volere del Senato della Repubblica di Venezia, della galassia Andromeda (immagine nell'ultravioletto dal Galaxy Evolution Explorer; NASA/JPL-Caltech, per gentile concessione) e di Giove (immagine della sonda Juno, ripresa nel Luglio 2016 da una distanza di 4,3 milioni di km dal pianeta; NASA/JPL-Caltech/SwRI/MSSS, per gentile concessione) con tre dei "satelliti galileiani". Galileo Galilei operò a Padova dal 1592 al 1610; in quegli anni scoprì quattro satelliti gioviani, conducendo le sue osservazioni astronomiche tuttavia non dalla Specola, bensì dal giardino della sua casa situata nelle vicinanze del Palazzo del Bo, sede centrale dell'Università patavina.

La foto della Specola in copertina è stata realizzata da Francesca Benetello.

ISBN 978-88-299-2972-6

Stampato in Italia

— Autori

Ugo Gasparini, Professore Ordinario di Fisica Sperimentale presso il Dipartimento di Fisica e Astronomia dell'Università di Padova, svolge attività di ricerca nell'ambito della Fisica delle particelle elementari. Ha lavorato in esperimenti sulla diffusione anelastica di adroni presso il Centro Europeo per le Ricerche Nucleari (CERN) di Ginevra, e successivamente alla progettazione e messa in opera di esperimenti al "Large Electron-Positron collider" (LEP) e al "Large Hadron Collider" (LHC) del CERN; nell'ambito di quest'ultimo, tuttora svolge attività di analisi dati orientata alle ricerche di processi di nuova fisica.

Martino Margoni, Professore Associato nel settore della Fisica Sperimentale delle Interazioni Fondamentali, lavora presso il Dipartimento di Fisica e Astronomia dell'Università di Padova. Ha fatto parte di collaborazioni internazionali in vari esperimenti operanti su acceleratori di alta energia occupandosi principalmente di Fisica dei quark pesanti. Attualmente è coordinatore del gruppo di Ricerca sulla Fisica del quark beauty nella collaborazione "Compact Muon Solenoid" (CMS) del CERN di Ginevra.

Franco Simonetto è Professore Ordinario di Fisica Generale presso il Dipartimento di Fisica e Astronomia dell'Universita di Padova, dove è titolare dei corsi di "Fisica Generale 2" nel corso di Laurea in Fisica e "Subnuclear Physics" nel corso di Laurea in Physics. È stato membro delle collaborazioni scientifiche "European Hybrid Spectrometer" e DELPHI al CERN e Babar presso lo Stanford Linear Accelerator, occupandosi principalmente dello studio della asimmetria tra materia e antimateria. Attualmente continua i suoi studi come membro della collaborazione CMS al CERN.

— Prefazione

Quest'opera si propone come testo per i corsi di Fisica Generale per gli studenti delle Scuole di Scienze e di Ingegneria. A vari anni dall'entrata in vigore della riforma universitaria e a seguito delle esperienze consolidatesi nell'insegnamento della Fisica come "materia di base", anche con alterne vicende circa l'opportuno grado di complessità e approfondimento da impartire negli insegnamenti dei primi anni delle lauree triennali, riteniamo utile proporre quest'opera, articolata in due volumi. Gli argomenti proposti sono quelli classici degli insegnamenti dei corsi di Fisica I e Fisica II (aventi denominazioni spesso differenti e diversi valori dei crediti formativi ad essi assegnati) presenti negli ordinamenti dei Corsi di Studio delle Scuole sopra citate: la Meccanica Classica, la Termodinamica e l'Elettromagnetismo, con l'inclusione nel Secondo Volume di parti significative inerenti alla Fisica Atomica e alla struttura della materia, che ormai non possono essere tralasciati anche a livello di un corso di base.

L'intento dell'opera è quello di fornire un "percorso principale" di studio, preservando in esso il necessario grado di rigore ed esaustività che riteniamo irrinunciabile in un corso universitario a carattere prettamente scientifico-ingegneristico, che il docente possa adattare alle esigenze specifiche del suo insegnamento, arricchendolo con i numerosi esempi ed approfondimenti proposti e chiaramente evidenziati nel testo. In particolare gli esempi sono proposti in maniera tale da stimolare e sviluppare l'attitudine al ragionamento dello studente, fornendo inizialmente uno spunto e una traccia di possibile soluzione del problema posto, e solo al termine di ogni capitolo dando una soluzione completa dello stesso. In tali esempi spesso ci si richiama a situazioni fisiche realistiche, operando e discutendo le approssimazioni/semplificazioni necessarie per rendere il problema affrontabile, in questo di nuovo cercando di stimolare le capacità di ragionamento e di spirito critico dello studente. In maniera complementare sono inoltre proposti degli approfondimenti che se da un lato arricchiscono dal punto di vista culturale lo studio da parte dello studente più motivato, dall'altro contribuiscono a meglio comprendere gli argomenti svolti, talora anticipando in modo il più possibile semplice e autoconsistente argomenti tradizionalmente affrontati in corsi più avanzati. Infine, al termine di ogni capitolo sono proposti vari esercizi, di complessità e difficoltà confrontabili con quelle usualmente proposte nelle prove scritte d'esame; la soluzione sinteticamente svolta contribuisce ulteriormente alla comprensione degli aspetti applicativi della materia.

— Indice generale

1. 2.	Piano dell'opera e contenuti del Primo Volume La definizione di una grandezza fisica	1 1 2
3.	Grandezze fisiche e loro misura	4
4.		
	Il Sistema Internazionale	8
5.	Ordini di grandezza di alcune grandezze fisiche nell'Universo che conosciamo: dall'"infinitamente piccolo" all'"infinitamente grande"	10
Ca	apitolo 1 Cinematica	15
	Punto materiale, traiettoria del punto materiale e legge oraria del moto	15
2.	Velocità	16
3.	Accelerazione	19
		20
5.	Moto armonico	23
6.	1	25
	Velocità ed accelerazione in funzione della posizione	27
8.	Moto in più dimensioni	28
	Vettori velocità ed accelerazione Meta di un como settoriosto all'accelerazione di gravità	32 37
	Moto di un corpo sottoposto all'accelerazione di gravità Velocità ed accelerazione in un moto circolare	39
	Composizione di moti	40
12.	Soluzioni degli Esempi	42
	Esercizi	45
	Soluzioni degli esercizi	47
	apitolo 2 Le forze e le leggi della dinamica	49
	Principio di inerzia e sistemi di riferimento inerziali	50
2.	Definizione operativa di forza	52
3.	-	54
	La Terza Legge della Dinamica	58
5.	Quantità di moto e teorema dell'impulso	60
6.	· ·	62
7.	La forza peso	64
	*	66
9.	Forze d'attrito	67
10.	Forze di trazione: tensione di una corda	72
	Forza elastica	74
	Moto di un pendolo semplice	75
	Momento angolare e teorema del momento angolare	77
1/	Forza centrali	70

15. Verifica sperimentale di una legge fisica: conservazione della quantità di moto di un sistema isolato	80
Soluzioni degli Esempi	83
Esercizi	84
Soluzioni degli esercizi	86
Capitolo 3 Lavoro ed energia	89
1. Lavoro di una forza	89
2. Energia cinetica e teorema dell'energia cinetica	93
3. Forze conservative	96
4. Energia potenziale	99
5. Energia meccanica e conservazione dell'energia6. Equazione del bilancio energetico	100 102
7. Lavoro compiuto dal momento di una forza nelle rotazioni	102
8. Campo di forza ed "azione a distanza"	103
9. Campo di forza conservativo e gradiente dell'energia potenziale	105
Soluzioni degli Esempi	107
Esercizi	109
Soluzioni degli esercizi	114
Capitolo 4 Gravitazione	119
Il moto dei pianeti e le leggi di Keplero	120
2. La legge della Gravitazione Universale	124
3. Applicazioni della legge di Gravitazione Universale:	
determinazione delle masse della Terra e del Sole,	
curva Kepleriana	130
4. Energia potenziale gravitazionale	132
5. Il campo gravitazionale	133
6. Cenni su effetti relativistici	135
7. Cenni sulle curve di rotazione delle galassie e sulla "materia oscura"	
Soluzioni degli Esempi	139 141
Esercizi Soluzioni degli esercizi	141
Capitolo 5 Moti relativi	143
1. Sistemi di riferimento in moto relativo:	1 4 4
legge di trasformazione della velocità	144
 Legge di trasformazione dell'accelerazione Trasformazioni galileiane e sistemi di riferimento inerziali 	147 154
4. Dinamica in sistemi di riferimento non inerziali. "Forze fittizie"	155
Soluzioni degli Esempi	158
Esercizi	160
Soluzioni degli esercizi	160
Capitolo 6 Dinamica dei sistemi di punti materiali	161
1. Centro di massa di un sistema di punti materiali e sue proprietà	162
2. Il sistema di riferimento del centro di massa	165
3. Teoremi di König dell'energia cinetica e del momento angolare ed	
ulteriori proprietà del CM	166
4. Forze interne ed esterne ad un sistema di punti materiali	168

5.	Il teorema del moto del CM: la "prima equazione cardinale" della dinamica dei sistemi	170			
6.	Il teorema del momento angolare:				
	la "seconda equazione cardinale" della dinamica dei sistemi				
7.	Il teorema dell'energia cinetica per un sistema di punti materiali	176			
8.	Urti tra punti materiali e "dinamica degli urti"	179 184 185			
9.	1 88				
	a forze esterne impulsive				
	10. Urti in più dimensioni				
Soluzioni degli Esempi					
	Esercizi				
Sol	luzioni degli esercizi	193			
Ca	apitolo 7 Dinamica del corpo rigido	197			
1.	Distribuzioni continue di materia: densità di massa	197			
2.	Centro di massa di un corpo continuo e sue proprietà	199			
3.	Moto di un corpo rigido	203			
4.	Rotazione di un corpo rigido intorno ad un asse fisso.				
	Momento d'inerzia	205			
5.	Teoremi di König dell'energia cinetica e del momento				
	angolare per un corpo rigido	211			
6.	Equazioni della dinamica del corpo rigido	212			
7.	Il teorema dell'energia cinetica per un corpo rigido	214			
8.	Il teorema degli assi paralleli di Huygens-Steiner				
	e sue applicazioni	215			
9.	1	217			
	Moto di puro rotolamento	221			
	Assi principali d'inerzia di un corpo rigido. Tensore d'inerzia	226			
	Moti giroscopici	230			
	Le equazioni della statica dei corpi rigidi e loro applicazioni	233			
	. Urti tra corpi rigidi	235			
	luzioni degli Esempi	236			
	ercizi	242			
Sol	luzioni degli esercizi	248			
	apitolo 8 Elementi di statica e dinamica dei fluidi	253			
1.	Pressione	253			
2.	Legge di Stevino	255			
3.	Principio di Archimede	260			
4.	Moto di un fluido: descrizione euleriana	261			
5.	Viscosità	263			
6.		264			
7.		269			
	luzioni degli Esempi	271			
	apitolo 9 Fenomeni oscillatori				
		070			
	I onde meccaniche	273			
1.		273			
2.	Oscillatore armonico forzato	274 277			

4.	Introduzione ai fenomeni ondulatori	281
5.	Onde meccaniche in una corda tesa	284
6.	Onde sonore	286
So	luzioni degli Esempi	289
C	apitolo 10 Termodinamica:	
	oncetti introduttivi generali	291
1.	Sistema termodinamico, variabili termodinamiche	231
1.	e stato termodinamico	292
2.	Trasformazioni termodinamiche e loro rappresentazione	293
3.	Temperatura empirica	294
4.	Gas ideale e temperatura del termometro a gas ideale	297
5.	Scale termometriche: kelvin, celsius e farenheit	299
6.	Comportamento del gas ideale. Leggi di Boyle	2))
٠.	e Gay-Lussac ed equazione di stato	300
7.	Lavoro compiuto da un sistema termodinamico	302
8.	Calore scambiato da un sistema termodinamico	306
	Calorimetria: capacità termica e calore specifico	307
	Determinazione del calore specifico di una sostanza.	
	Calorimetro di Regnault	311
11	. Calori latenti e trasformazioni di fase	312
	Le forme degli scambi di calore: conduzione, convezione, irraggiamento	
	luzioni degli Esempi	315
	ercizi	315
	luzioni degli esercizi	316
Ca	apitolo 11 II Primo Principio della Termodinamica	317
1.	Gli esperimenti di Joule sull'equivalenza tra calore e lavoro	317
2.	Il Primo Principio della Termodinamica	319
3.	Energia interna	321
4.	Esperimento di Joule sull'"espansione libera" dei gas.	
	Energia interna del gas ideale	323
5.	7 1 1 1	
	e volume costanti di un gas ideale	326
6.	Trasformazione adiabatica reversibile di un gas ideale	327
	luzioni degli Esempi	330
	ercizi	332
So	luzioni degli esercizi	334
C	apitolo 12 II Secondo Principio	
	ella Termodinamica	227
		337
1. 2.	Trasformazioni cicliche. Macchine termiche e macchine frigorifere Il ciclo termico di Carnot	338 339
2.3.	Il ciclo frigorifero di Carnot	341
 4. 	Il Secondo Principio della Termodinamica	341
4. 5.	Il teorema di Carnot	344
<i>5</i> . 6.	Teorema e disuguaglianza di Clausius	344
0. 7.	Entropia e principio dell'aumento dell'entropia dei sistemi isolati	349
7. 8.	Entropia del gas ideale	351
		352
9.	Entropia ed energia inutilizzabile	35

10. Diagramma temperatura-entropia11. Temperatura termodinamica assoluta.Terzo Principio della Termodinamica	353 354	
Soluzioni degli Esempi	356	
Esercizi	358	
Soluzioni degli esercizi	361	
Capitolo 13 Teoria cinetica del		
gas ideale e cenni di Meccanica Statistica	367	
Modello microscopico del gas ideale: teoria cinetica	368	
2. Il Principio di equipartizione dell'energia e le predizioni		
sui calori specifici	371	
3. Distribuzione delle velocità di Maxwell e		
distribuzione canonica dell'energia	375	
4. Interpretazione probabilistica del Secondo Principio e dell'entropia	378	
Soluzioni degli Esempi	381	
Appendice	383	
Indice analico	389	